

Project Proposal GA - SMART

former

Active / Passive Acoustic SHM System for Impact Detection (**APASHI**) Adaptive Impact Absorption and SHM for General Aviation (**AIA-GA**)

"General Aviation and European Air Transport System Third Call FP7", Workshop no 2 BRUSSELS, Polish Science Contact Agency (Pol. SCA), Rue du Throne 98, 1050 Brussels, 23 November 2009

Dr. Michael Scheerer/ AMAT- Aerospace & Advanced Composites

Project Idea

 Development and Application of a Active / Passive Acoustic Structural Health Monitoring System for (Impact) Damage Detection in primary composite structures using cheaper and easy to install or even embeddable sensors

Motivation for SHM in Composite Structures

Certification Issues

Hachenber D. 2002, "The role of Advanced Numerical Methods in the Design and Certification of Future Composite Aircraft Structures" 5th world congress on Computational Mechanics WCCM V, Vienna, Austria, July 7-12, 2002 Potential for SHM by impact & delamination detection

- Individual Maintenance / Repair Strategies –
- From Time Based Maintenance to Condition Based Maintenance
- Control of difficult / impossible to inspect parts
- Optimized Design To date:

uncertainties in integrity of their manufacture susceptibility to barely visible impact damage (BVID)

Design load: 33% of failure load compared to 60% in metals

Lessons learned from CESAR Project Active vs. Passive Acoustic SHM Systems

Active / Passive Acoustic SHM System Concept

Proposed Project Steps

- Identification of relevant types and sizes of damages for a prototype primary composite structure
- Analyses of the necessary actuator / sensor configuration
- Definition of the hardware / software requirements
- Development / Procurement of the necessary hardware
- Development of the damage quantification algorithm
- Verification of the system on simplified substructures and the final prototype structure under simulated real environmental conditions

Current Partners

Participant no.	Participant organization name / short	Country	Contact Person
1	Institute of Aviation	Poland	
	ΙοΑ		
2*	Austrian Institute of technology	Austria	Ernst Semerad
	AIT		Michael Scheerer
3	National Aerospace Laboratory	Netherlands	Ronald Beukema
	NLR		
4	Materials Engineering Research Laboratory	United Kingdom	Stefanos GIANNIS
	MERL		
5		Cech Republik	Jiri Behal
	VZLU		
6	Italian Aerospace Research Centre	Italy	Antonio M. Calabrò
	CIRA	,	
7			
		Spain	Valerijan COKONAJ
	AERNNOVA		
8	PARAGON LTD	Greece	Harry Tsahalis
0	Institute of Fundamental Technological		
9	Research	Poland	Jan Holnicki-Szulc
	IPPT		
10			

Project structure

WP No	Name of WP	Activity Type	Participant Short Name
WP1	Assesment of existing active and passive SHM methods for damage detection in composites		AIT, NLR, CIRA
T1.1	Survey of existing active SHM methods		
T1.2	Survey of existing passive SHM methods		
T1.3	Definition of Requirments to merge active and passive methods		
T1.4	Status of current detection capability in composites		
WP2	Development of Active / Passive Hardware Components		VZLU, Aernnova
T2.1	Development of Actuation Hardware and actuators		
T2.2	Development of Detection Hardware and Sensors		
T2.3	Develpoment of combinded Active / Passive hardware platform		
WP3	Development of Active / Passive Algorithms		AIT, AERNNOVA, PARAGON, IPPT
T3.1	Development of Algorithms for Active Damage Detection		
T3.2	Development of Algorithms for Passive Damage Detection		
Т3.3	Development of combined active / passive Algorithms		
WP4	Verification Testing on Subcomponents		VZLU, MERL
T4.1	Defintion of Subcomopnents		
T4.2	Defintion of Damages and Loading conditions		
T4.3	Verification Testing		
WP5	Structural Component Test in simulated environment		VZLU, MERL
T5.1	Defintion of Comopnents		
T5.2	Defintion of Damages and Loading conditions		
T5.3	Component Testing in simulated Environment		
WP6	Evaluation of Tests - Assessment for Condition Based Maintainance		All
T6.1	Test evaluation		
T6.2	Development of Methods for CBM		